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Using (8) we reduce conditions (7) of existence of periodic solutions to the inequalities 

D ($1, $2) 
D (PI, pz) 1 k=o = - y& E (%I# 0, [ ;(;I; ;i 1 ,._=o = 2E 04 

which are satisfied for any periodic solutions escept for X’ = 0. 

Quasi-periodic motions of the solid body generally correspond to the derived periodic 
solutions of system (1). 

In fact let us consider the cyclic integral 

‘li” = (A 

Zf - CqY cos 6 
sin2cp + Bcos"cp) + Ccos2fi 

By expanding its right-hand part in Fourier series in multiples of argument z / T and 

integrating, we obtain Q = n (z - r,,) + CD (z), where CD (z + T) = @ (z), and n is a 
constant quantity dependent on initial conditions. It is obvious that generally nl’ is not 

a multiple of 2n, which shows the validity of the above conclusion. 
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It is shown that a wide class of nonlinear forces can be represented by the sum of 
potential, nonconservative position, gyroscopic and dissipative forces, 

Investigation of motion stability is in many instances conveniently achieved by ana- 
lyzing the structure of acting forces, This method, whose basis was established in [1] , 
has been recently successfully applied mainly to linear systems of arbitrary forces which 
can be fully represented as the sum of potential, nonconservative position, gyroscopic and 
dissipative forces. It is shown in this paper that such representation of forces can alsobe 
applied to a wide class of nonlinear forces. 

Let an arbitrary vector field Q (5) = Q (I~, . . ., z,,) be specified in some region of 

an n-dimensional orthogonal space 2 = (zr, . . . , Z,J . We call the vector field R (x) 
a circulation field, if at every point A4 of the specified field region vectors R and x 
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are normal to each other (x is the radius vector of point M) 

R.x= -jj &xi -0 

Theorem. Any arbitrary vector field Q (z) that is continuous together with its first 
order derivatives can be always resolved into potential and circulation fields 

in which the field R (z) 

Proof. Components 

Q (5) = - grad II $ R (2) (2) 

and the potential II are to be determined. 

K, of the potential field K (x) = - grad II satisfy conditions 

8K. c?K, 
I 
ax =arj (k, i= 1, . . ., n) 

k 

(3) 

The scalar form of equality (2) is 

Qk = KI, + R,, (k = I, . . ., n) (4) 

With this formulas (3) reduce to the form 

aKj aH, @, aQj 

axk 

=--mkj,@kj-~-~ 
8Xj 

(5) 
3 k 

If all &j = Cl, the field Q (x) is potential and R = 0. 

Partial differentiation of equality (1) with respect to xk yields 

i xi 2 z-R, (k = 1,. . ., II) 

Li=l k 

Using equality (5) we obtain 

Thus components Rk satisfy n nonhomogeneous linear differential equations in partial 

derivatives, in which functions Hk (I) are known. Let us compose a System of ordinary 
differential equations which would correspond to Eq. (6), and determine n first integrals 

of that system % 

51 = ClS,, . . ., “n-I -= c,,_p,, R,= -!._ 
27% s 

* Ii, dx,, + +- 
71 

where Cj are constants of integration. 
The general solution of Eq. (6) can be represented in the form 

% 
R, ‘- _.!_. II, dx,, + _%,..., Trr-1 (k==l, _. . . r?) 

573 s LY, 
xn x9l ’ xn > 

where Yh. is an arbitrary function. 
For ffk = 0 (k = 1, . . ., n) all Rk = 0 (see the remark to formula (5) and equalities 

(6)). Hence, setting ‘l’k = 6, for the components of the nonconservative position force 
we obtain 
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in which,after squarily; a3 / x,, (j = 1, . . .; n _ fj are to be substituted for all CJ . 
Components of the potential field K (x) are determined by the equality (4), after which 

the field potential II (2) is determined in the usual manner. 

Note that for linear fields Q = Cx, where C is an arbitrary square matrix of order 

n X n, the proof is elementary: it is sufficient to resolve matrix C into a symmetric 

and a skew-symmetric parts. 

Example. Let a vector field be specified by its components 

Q1 =f &YJ - z&~, Qz = - zl)” + x8 

Using the proposed method we determine the components of the circulation and 
potential fields 

R1 -= ?,;551%2, R’L S - 2/@i’j3 , II L1= - 3/;xl=j3 + 3/3z,%, - ‘/2x33 

Let us apply the theorem proved above to resolving forces into components. We deter- 
mine the system position by n generalized coordinates ql, * * a, Pnr and introduce in 

the investigation an n-dimensional orthogonal space (91, . . ., qn) and two vectors: 

9 = (%rl * * ‘1 pa) and ‘Q = (Ql, ..*, &), where Q;; are the generalized forces of the 

system, The first of these vectors is assumed to define a representative point and the 

second the force applied at that point. 
In the linear theory, force R = - Pq, where’ P is a skew-symmetric matrix of order 

n X n, is called the nonconservative positional force (in Ziegler’s terminology [Z] it is 

called the circulation force), This force is normal to q, since R.q = - Pqo q z 0. 

We shall generally call nonconservative position force any force R , if it is normal to q 

R-q= i h’jqj=O (8) 
j=1 

On the basis of the above theorem it is possible to resolve any position force Q* (q) 
that is continuous with its first order derivatives into potential and noncon~rvative posi- 

tion components 
Q* (4 = - grad II + R (4 (9) 

where II is the potential energy of the system. 
Let us now consider forces Q** tq’) which depend on velocity. In conformity withthe 

definition given by Thomson and Tait Cl], force I’ is called gyroscopic if its power is 

zero 2% 
r.q- = c rj’lj-=o (101 

j=l 

In the velocity space (ql , . . ., q,,‘) the gyroscopic force has the property of ortho- 

gonality (1). Hence force Q** (q’) can be resolved into two components 

Q** (q-f = - grad P + l’ fq’) 
Force 

D (q*) = - grad F, DI; = - 8F /8qi*.(k = 1, . . ., n) 

is dissipative with positive or negative resistance. On the basis of the last equalities 

function F may be called the generalized Rayleigh function. (Another generalization 
of the Rayleigh function is due to Lur’e [3]). 
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Thus the following theorem is proved. 
Theorem. The arbitrary force 

Q (4, Q') = Q* (4 + Q** (q’) 

that is continuous with its first order derivatives can be resolved into potential, noncon- 

servative position, gyroscopic, and dissipative forces. 

The definition (8) of nonconservative position forces and the definition (10) of gyro- 
scopic forces imply that the first must depend on coordinates qti of the system, while the 

second depend on velocities qh’. However, the general definition (8) of the nonconserva- 
tive position forces does not exclude the possibility of these forces depending also on 

velocities q,;’ and time t. The gyroscopic and dissipative forces may, also, depend not 
only on velocities qk but on coordinates q,,. and time t , as well. Certain theorems that 
determine the stability properties of motion of a system on the basis of force structure 

which satisfy these general defintions are given in [4]. 
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A method is proposed for the determination of certain moments of the Boltzmann 

collision integral, which appear in boundary problem solutions in the kinetic the- 

ory of gases, by expansion in the velocity half-space without actually calculating 
these [l], which makes it possible to establish definite relationships (including those 
derived earlier [Z, 31) between the moments. 

The solution of boundary value problems of the kinetic theory of gases by the method 
of expansion in the velocity half-plane necessitates the determination of certain integ- 
rals that are moments of the Boltzmann collision integral, which many authors rightly 
consider to be the most laborious part of solving problems by this method. The step-by- 

step method of direct calculation of these moments was developed in [l]. It makes it 
possible, in principle, to solve a wide class of boundary value problems of the kinetic 
theory. In practice the application of that method [l] necessitates, however, very labo- 
rious calculations and does not provide means for checking the obtained results (errors 


